منابع مشابه
Integral Equation Methods and Numerical Solutions of Crack and Inclusion Problems in Planar Elastostatics
We present algorithms for the crackand inclusion problem in planar linear elastostatics. The algorithms are based on new integral equations. For the pure crack problem the integral equations are of Fredholm’s second kind. Our algorithms show great stability and allow for solutions to problems more complex than previously has been possible. Our results are orders of magnitudes more accurate than...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
A Conceptual Framework for Problems in Elastostatics
Carnegie Mellon University, Pittsburgh, PA, USA. E-:mail: [email protected] . Abstract. In finite elasticity, the traditional local boundary-value problems are rarely appropriate. More often one has to consider non-local environmental loads. This paper gives a general description of schemes for formulating such non-local problems. Interesting examples are cavity problems, special cases of whi...
متن کاملComparison of the performance of SSPH and MLS basis functions for two-dimensional linear elastostatics problems including quasistatic crack propagation
We use symmetric smoothed particle hydrodynamics (SSPH) and moving least squares (MLS) basis functions to analyze six linear elastostatics problems by first deriving their Petrov-Galerkin approximations. With SSPH basis functions one can approximate the trial solution and its derivatives by using different basis functions whereas with MLS basis functions the derivatives of the trial solution in...
متن کاملThe method of fundamental solutions for three-dimensional elastostatics problems
We consider the application of the method of fundamental solutions to isotropic elastostatics problems in three space dimensions. The displacements are approximated by linear combinations of the fundamental solutions of the Cauchy–Navier equations of elasticity, which are expressed in terms of sources placed outside the domain of the problem under consideration. The final positions of the sourc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2007
ISSN: 1617-7061,1617-7061
DOI: 10.1002/pamm.200700642